An extrapolation method for a Volterra integral equation with weakly singular kernel
نویسندگان
چکیده
In this work we consider second kind Volterra integral equations with weakly singular kernels. By introducing some appropriate function spaces we prove the existence of an asymptotic error expansion for Euler’s method. This result allows the use of certain extrapolation procedures which is illustrated by means of some numerical examples. o 1997 Elsevier Science B.V.
منابع مشابه
A simple algorithm for solving the Volterra integral equation featuring a weakly singular kernel
There are many methods for numerical solutions of integral equations. In various branches of science and engineering, chemistry and biology, and physics applications integral equation is provided by many other authors. In this paper, a simple numerical method using a fuzzy, for the numerical solution of the integral equation with the weak singular kernel is provided. Finally, by providing three...
متن کاملNumerical solution of a type of weakly singular nonlinear Volterra integral equation by Tau Method
In this paper, a matrix based method is considered for the solution of a class of nonlinear Volterra integral equations with a kernel of the general form $s^{beta}(t-s)^{-alpha}G(y(s))$ based on the Tau method. In this method, a transformation of the independent variable is first introduced in order to obtain a new equation with smoother solution. Error analysis of this method is also ...
متن کاملExtrapolation Methods for a Nonlinear Weakly Singular Volterra Integral Equation
In this work we consider a nonlinear Volterra integral equation with weakly singular kernel. An asymptotic error expansion for the explicit Euler’s method is obtained and this allows the use of certain extrapolation procedures. The performance of the extrapolation method is illustrated by several numerical examples.
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کامل